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The general many-on-one stochastic duel conditioned on the order in which targets
are attacked is investigated, and the state probabilities are derived for the first
time. The results are illustrated by an example of a three-on-one stochastic duel
with negative exponential interfiring times. Some aspects of the tradeoff between
individual firepower and the nominal size of a force are investigated.

INTRODUCTION

The marksman problem (one versus a passive target) and the one-on-one
stochastic duel has been treated extensively in the past. Ancker {1] provides an
excellent survey of the work done by himself and others on these models.

The problem of the general two-on-one stochastic duel was first considered
by Gafarian and Ancker [3], who obtained, among other results, closed expres-
sions for the duel state probabilities and the two sides win probabilities.

The many-on-one stochastic duel was considered by Friedman [2] and Kikuta
[4] for the case where all the interfiring times (and hence the time required to
kill individual units) have the negative exponential distribution (ned). They have
obtained an optimal firing policy for the single blue unit.

In this article we extend the general two-on-one stochastic duel model given
in [3] to the general many-on-one case conditioned on the order in which targets
are attacked. This generalization also accounts for the relaxation of the hom-
ogeneity assumption in [3] that all units on the multiunit’s (red) side are equiv-
alent in terms of firepower effectiveness and vulnerability to the B unit. In
particular, we derive a closed expression for the time-dependent state proba-
bilities and, consequently, the single blue-unit win probability. As an example
we use these results to obtain the state probabilities of the three-on-one stochastic
duel where all interfiring times are assumed to be ned random variables.

We conclude this article with a short analysis of the required relative effec-
tiveness of the biue unit and a single red unit in order to maintain a *fair fight”
between these two sides. It is shown that if the time to a kill by each one of the
n red units is a ned variate with the same mean, and by the blue unit is a gamma
distributed (gd) variate, then the ratio of the individual mean red time to a kill
to the mean blue time to a kill must be approximately proportional to n(n +
1) in order to secure parity.

Model Assumptions and Notations

Consider a situation where a single blue unit (called B) faces » red units
(R;, . . . ,R,). All units have an unlimited supply of ammunition. The n red
units fire continuously and independently of each other.
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Let X be the continuous random interfiring time of R; which are iid from
round to round and let Gg(f) and gz (f) denote the probability distribution
function (pdf) and the density function (df) of X, respectively. The probability
that R, killed B on its nth round fired is Pz (n). If, for example, R; has a constant
conditional kill probability p on each round fired, then Pz (n) = (1 — p)*"'p.
In general, Pg(n) can represent a process with any decreasing, constant, or
increasing conditional probability of a kill on round »n. In a similar way, we
define X to be the interfiring time of B firing at R,, and G, (¢) and gz(¢) to
be its pdf and df, respectively. Py(n) is the probability that B killed R; on its
nth round fired at R;. We assume that once B starts firing at a particular R;, he
should not switch his fire until the current unit has been annihilated.

To simplify the derivation of the results, we consider, as in [3], the interkill
time, which is the time from the beginning of engagement until kill, rather than
the interfiring time. Thus, let §; be the time it takes B to kill R;, and let T, be
the time it takes R; to kill B. According to our assumption, S; and T}, i =
1, ... ,nareindependent random variables. As in the case of a marksman firing
at a passive target, their distribution functions and density functions are Fp(t),
fa(t), Fp(t), and fe(t), respectively, where, for example,

Fy(t) = 1-21 P5(1)G5(1)

and j* denotes j — 1 convolutions of G, with itself.

Let Wy, (2),1 =0, ... ,n k = 0,1, denote the state where exactly ! red units
and k blue units are already destroyed by time ¢, and let g,,(t) = P{W ()}
represent the corresponding state probability.

Finally, let Fg(t) and Fg(f), i = 1, ... ,n, denote the complementary dis-
tribution functions of S; and T, respectively. It is clear that in this general case
of the many-on-one stochastic duel, the probabilities ¢;,(¢) may depend on the
firing policy of B. For different orders by which B fires at the R;s, the g;,(1)
probabilities, and hence the win probabilities for each side, may be different.

In the particular (homogeneous) case where T, i = 1, ... ,n are iid and §;,
i=1,...,nareiid, the probabilities q,,() are, of course, independent of that
order.

The probabilities that are derived in the next section are, therefore, related
to a particular order by which B picks the R;s denoted by R;,R,, ... ,R,.
However, to relate the results to the commonly used Lanchester law, we would
have to assume a random choice of targets by B. This is equivalent to selecting
each of the n! orders with probability 1/n!, computing g,,(f) for each order,
and summing these g, ,(t)s, each weighted by 1/n!, to get the final answer.

THE STATE PROBABILITIES

To derive the state probabilities g,,(f) we consider five cases.

CASE I. ! =0, k = 0. The event W,(¢) is equivalent to the event {S, =
tmin(T,, . . . ,T,) = t}. Therefore,

doa() = Fi () TT Fa(0)- (1)

i=1
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CASEIL: ! =0,k = 1. Here Wy,(¢#) holds if and only if {min(T}, . . . ,T;)
= min($,,#)} holds. Hence
qu(®) = [ Pmin(T;, ... T) = 0)fa0) &
+ [ Pmin(Ts, .. T) S 0fa0) @
or
goa(t) = 1 - J: f5,(y) ,lflx Fﬁa,(f)‘dy - F(1) }f[l Fr(s). ()
. CASEIIl: I=1,...,n — 1,k = 0. In this case W, (¢} holds if and only
i
i {+1
{2 Sp=M;,j= 2= srsmz-l Ss M,H,,,zt},
where

M; = min(T, ..., T}), i<j.
It is easily seen that W,,(¢) is equivalent to

i !
{2 Sa=Thi=1,....0, 2 S, = My,

m=1 me=]

! i+1
2 Sm =t= 2 Sm, Ml+1.n = t}'

m=1 m=l

But M;,,, = t and 2/ _,S, = timply that M,,,, = 2} _,5,. Also,
independence of S, . . . ,S,, Ty, . . . ,T,, it follows that

n i
Q['o(t) = H FCR'(t)P,. (Z Sm = T:,,j = 1, . ,I,

P=lel m=l

$osie§s)

m=1 m=]

Now,
i i+1
P,(Essj,j=1,. IES Stszs)
m=1 m=1 mel
ffB(J’I)Ffz,(J"l)P ()"1 + 2 Sa=t4,j=2,....0

1+1
YI+ZSmEt£y1+2Sm)dyl
m=2 m=2

from the

)



716 Naval Research Logistics, Vol, 34 (1987)
= [ 7 a0 a0 Frn + 3
) JO

i
xPr(yHry:ZSmsT,-,j=3,...,1,

I+1
y1+y1+ ZS"—'I“:yl-{"y«‘F ZS)dyldy2=
m=3 m=3

t [t-n (B N ek !
= Jf J I f5(9)Fs | 2 ym)
0 Jo 0 j=1 m=1

-1 -1
(Zym+Sl<r<2ym+S,

m=1i
-1

+ S 2 Y + 85 = TI) dy, ... dy... (5)

m=1

We conclude that

w11 e [ [ oo (3 )

i=i+1 m=1
x Fg ( Z ym) dy, . . . dy. (6)
m=1

CASEIV: [ =1,...,n - 1,k = 1 Tt can be shown that W, (¢) holds if
and only if

H+1
{2 S.=Tj=1,... A 2 Sn =M 2 ShzMiip My = f}-
m=1

Following the [ — I steps as in Case III we obtain that

I I
P, I:(E ymsMHl,nSmin(E Ym + S;.,.l,l))]. {7)
m=1 m=1
Thus

o[ [ ron (5) (1, (5

- I F5(1)F, | (r - > ym) - J'"_E‘"'W 1 F?a,.(z.] ym)

=i+ m=1 0 i={+1

X fo, (Yie1) d)’r+1) dyy, . . . ,dy. (8)

CASE V: | = n, k = 0. The event W, 4(t) holds if and only if

i "
{2 Sn=Tj=1,...,n, Z S,,,st}.
m=1 m=1
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Applying similar steps as in case III, we obtain that
t ft-n t=Z iy B i
qu®) = [ [ [TF L 000 (3 o) ey )
i=1 m=1

Since q,,(t) = 0, it follows that the derivation of all state probabilities for the
conditional many-on-one¢ stochastic duel has been completed. The probability
" that blue wins P[B] is

P[B] = g,o() = L " T Faly)F, (21 y,,,) dy,, . . ..dy,, (10)

0 i=1

and the probability P[R] that the red force wins is

Hm=§%@=§fmfﬁﬁ(iﬂ

=0 iml m=1
1+1 n ! n i+1
<At a0 (1153, (3 0n - 11 75 (3 02))
i=1 J=I+1 m=1 j=1+1 m=1
X dyy, . .. ,dy =1 — P[B]. (11)
EXAMPLE

Let S; and T}, i = 1,2,3 be ned random variables. That is, fz{(¢) = Ae ™ and
fr, = pe ™, i = 1,2,3. This is a well-known stochastic Lanchester problem.
Using the results in (1), (3), (6), (8), and (9) we have

Gooft) = e~ **W, (2
guolt) = iruﬂ,.),(l - e™¥), (13)
g20(t) = 2%1.28_(“”‘(1 — e W), a4
1 e—(}d—u)f
=N -
g30ft) [(;\ + p)A + 2p)(A + 3p)  2pi(N + W)
e—(l+2|.|.)i e‘*(7\+3l'-)‘ ] (15)
+— - 3 ’
S0 0
3
Joi(t) = A +p3u (1 — e+ ' (16)
M e At gt Jp.)f)
_ - + . 17
qra(t) = 2: ((?\ + 20N +3p) A+2p A+ 3 (17)
M e—lh—n)r
21(8) = A2 -
g24(t) [()\ + WA+ 2p)(0 + 3u) 2p(h + p)
o ] (18)
" - .
p(h +2)  2p(h + 3p)

From Eq. (6) and the definition of the exponential pdf and df, it follows that
for any value of n = 1,2, . . . the probability g, () that the blue side wins the
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battle before time ¢ is obtained by solving the recursion equation
dua®) = [ Gu-nalt=x)e~0+m ds. (19)
0

Also, from (10) and (11) we conclude that
API

P[B] = ——— (20)
[I1 O + i)
and
PR = 3 — @
f“gu+m—ﬂm

In this exponential case these probabilities may also be written down directly
by examining the problem in an appropriate state space.

RELATIVE EFFECTIVENESS OF THE TWO SIDES

When several red units (R, . . . ,R,) face in a duel a single blue (B) unit
whose firepower is equally effective as that of each R;, it is clear the odds that
the red force wins the battle are higher than that of the single B unit. If, however,
the firepower of B may be made more effective, then the classical question of
how quality in combat can compensate for quantity arises.

The firepower effectiveness is measured here in terms of kill rate or the
reciprocal of the mean time to a kill. The question is, therefore, how much
faster, on the average, must the B unit be than each R, unit in terms of time to
a kill, in order to secure a fair fight where P[B] = 1 holds.

Suppose that each §;,i = 1, . . . ,nis a gamma(a) distributed random variable
with scale parameter A and shape parameter a. Each T,,i=1,...,nisaned
random variable with scale parameter w. That is,

foly) = Ay=~te™™/l(a), i=1,...,n (23)
and
fr(y) = pe®, i=1...,n (24)

The gamma-distributed interkill time may appear in situations where the kil
probability function Pg(n) has a monotonic increasing hazard function; that is,
a situation where the conditional kill probability increases with the number of
“no-kill” rounds fired. For example, if

Pa(n) = (1 - UBP(n — 1)B", n=12,..., 0<B<I,

then it is easily seen that the hazard function Hy(r) = P (n)/Z;.,Ps(]) is
monotonic increasing and therefore the firing process is with an increasing con-
ditional kill probability given by (n — 1)(1 — By¥/((» — 1) - (n — 2)B). If
the interfiring times are ned random variables with parameter A, then the interkill
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time is a gamma-2-distributed random variable with df

falt) = [M1 = B)Jit - e7M0~Px,

Let 0 < C, < 1 be a number such that C,E(T;) = E(S;) implies P[B] = 0.5,
where E() denotes the mean of the respective distributions. From (23) and (24)
it follows that C, is such that AC, = op implies P[B] = 0.5.

The C, parameter is the required effectiveness ratio for parity between the
two sides. From (10) it follows that C, must be such that

(1‘[ 1+ iC,,/a))m =2 (25)

i=1

holds. The value of the effectiveness ratio C, depends on the values of the shape
parameter of the §; distribution function.
It is easily seen that as « gets larger, then

(H 1+ iC,,/a)) — e G2 (26)
i=1
and from (25) and (26) C, = (2 In 2)/n(n + 1) for a large enough.

Figure 1 illustrates the graphs of C, as a function of the size n of the red force.
The graphs correspond to the cases where « = 1 (ned), « = 2, and a = 5, and
to the limit value of C, as @« — . Clearly, the convergence of C, is quite rapid
and it gets faster as # increases.

An examination of Fig. 1 shows that for n = 3 the value of C, is approximately
the same for all shapes («) of the blue force time-to-a-kill (gamma) distributions.

In classical combat analysis it is common to assume that the ratio between

Cn

H 2 3 4 s € 7 8 ) 10

Figure 1. Effectiveness ratio.
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the sizes of the attacking and the defending forces is 3 to 1. Ignoring, for that
matter, the synergism which is usually present in a multiweapon force, it follows
that, for example, a single defending tank must be approximately eight times
more effective than an attacking tank in order for the defending force to have
equal chances against the three-times-larger attacking force. If, for example,
n = 7, then the B unit time to a kill must be, on the average, 40 times shorter
than each one of the R, units in order to have P[B] = 0.5. The above results
are generai for all shapes of gamma distributions.

CONCLUSIONS

In this article we have derived, for the first time, the state probabilities and
the win probabilities for the general many-on-one duel conditioned on the order
in which targets are attacked. These results were illustrated by an example where
the interfiring times were ned random variables.

The relation between the effectiveness of the blue unit and a single red unit
in terms of time of a kill was investigated. It was shown that if the interkill times
are ned random variables on the red side and gamma-distributed random var-
iables on the blue side, then the blue-side effectiveness must be greater than
that of a single red unit by a proportion which is on the order of the square of
the nominal force ratio. This result is insensitive to the shape parameter « = 1
of the corresponding gamma distribution.
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